Course options
Key information
Duration: 4 years full time
UCAS code: HG0F
Institution code: R72
Campus: Egham
The course
BEng Computer Systems Engineering with Integrated Foundation Year
This course is available to Home (UK) students and students from the EU who meet the English Language requirements.
Our Integrated Foundation Year for science is a thorough, skills-building course that will give you everything you need to start your study of BEng Computer Systems Engineering with confidence.
Engineering, Physical, Computational and Mathematical sciences underpin modern technological society and can help us provide answers to fundamental questions. Our Foundation Year sets you up so that you’re ready to take on those questions - providing you with opportunities to gain knowledge and understanding of how to get started in studying the sciences at university, including your chosen degree subject.
Learning from friendly, expert tutors, you’ll explore modules designed to provide familiarity with Mathematics and computation – the language of modern science and technology, and key for success in science, technology and engineering.
Once you have completed your Foundation year, you will normally progress onto the full degree course, BEng Computer Systems Engineering. There may also be flexibility to move onto a degree in another department (see end of section, below).
Computer systems engineering is a discipline that embodies the science and technology of design, construction, implementation, and maintenance of software and hardware components of modern computing systems, computer-controlled equipment, and networks of intelligent devices. It is solidly grounded in the theories and principles of computing, mathematics, science and engineering, and it applies these theories and principles to solve technical problems through the design of computing hardware, software, networks, and processes.
Creative technologies are at the core of the multimedia industries, but they are also changing the way we interact with computers and the real world. For work or entertainment, at home or in industrial environments, virtual/augmented reality is making its way into our everyday lives, requiring new tools (sensors, haptic devices) and approaches (artificial intelligence, storytelling).
This undergraduate degree will enable you to broaden your technological knowledge and understanding in Computer Sciences and Electronic Engineering and equip you with the practical skills that you will need to succeed in this fast moving and exciting area.
We offer a vibrant environment in which you can pursue your studies. You’ll study a combination of core courses in Computer Sciences and Electronic Engineering to introduce the theoretical knowledge and practical skills relevant to professional practice, with a range of specialist options from computer and network security systems, renewable energy systems, and smart transportation, to voice and music technologies, human factors and healthcare engineering.
The course will engage you imaginatively in the process of learning through creative hands-on group and individual project based activities, enabling you to develop your independent critical thinking and judgement. As well as the fundamentals of computer technologies and electrical/electronic engineering techniques, you’ll develop an appreciation of how electronics and computer systems engineering is the heart of many systems used on a daily basis, including mobile communications systems, computer system, transport systems, energy systems, software engineering, medical applications, domestic appliances, TV, radio, music studios and gaming devices.
- A degree course structured to develop ingenuity, creativity, invention and product development skills.
- Enjoy varied, practical project-led learning.
- Learn in a new building that is purpose-built to support electronic engineering processes.
- Develop your interests through a number of optional modules in your final year.
- Graduate with high employability prospects in a thriving industry.
On successful completion of your Foundation Year, you may be able to choose an alternative pathway which could include a degree from one of the other departments offering a Foundation Year within the School of Engineering, Physical and Mathematical Sciences. If you'd like to do this, you may take your Foundation Year Individual Project in one of these other departments. The degree course you choose to take after progression is likely to depend on the individual project you select during the foundation year. Please note however that you must take 'Foundation Skills (Mathematics)' and your individual project in the Department of Mathematics if you wish to join a full degree course in Mathematics.
From time to time, we make changes to our courses to improve the student and learning experience. If we make a significant change to your chosen course, we’ll let you know as soon as possible.
Course structure
Core Modules
Foundation Year
-
The aims of this module are to develop fundamental practical skills in computer programming and computational thinking using a hands-on approach. This is an entry-level module and is suitable for those with no prior programming experience. This module will contain foundational programming topics, including basic data structures, conditionals and loops, functions, and classes.
-
This module aims to provide some key concepts in physical sciences that underpin all Physics and Engineering disciplines. The module will start with basic physics principles and will be gradually further developed in the Physical Sciences II module in the second term. Subjects explored on this module include Units and dimensions, Materials, Motion, Newton's laws, Connected particles, Static equilibrium, Fluids, Thermodynamics and Electricity.
-
This module aims to provide the mathematics required for a foundation in engineering and physical science, enabling students to progress to subsequent calculus-based courses. It is designed to help students develop comfort and skill in using mathematical concepts and applying these concepts to problems in Engineering, Computer Science, Maths, and Physics. Additionally, the module highlights the application of mathematical techniques to topics in engineering and physics. The main mathematical topics and concepts covered in the module include algebra (simplification and rearrangement), sequences and series, number bases, logic, functions, graphing of functions, exponentials and logarithms, trigonometry, vectors/matrices, and complex numbers.
-
This module aims to develop group coding project skills of students on EMPS degrees with an Integrated Foundation Year. This is to prepare them for their undergraduate degrees. Students will learn to use a modern software development methodology to develop a group coding project. In addition, students will also learn teamwork skills needed for collaborative coding.
-
This module is built around global issues. Each topic will embody issues of global importance and be based on authentic and topical world events. The module is intended to deliver an interdisciplinary, academically authentic introduction to global issues, which satisfies a wide range of interests appealing to students wanting to progress onto a range of subjects such as maths, physics, computer science and electronic engineering. Therefore, readings and lectures will approach the topics from an engineering science perspective. Topics covered are likely to include Neural networks, Micro controllers\robotics, Computer architecture, Algorithms, Astrotechnology, The science of climate change and Industry 4.0 & Society 5.0.
-
The aim of the module is to provide the calculus and statistics required for a foundation in engineering and physical science. The module will provide a foundation so that a student can apply calculus to real world problems. The module also aims to aid students in developing familiarity and skills in differentiation and integration. The main mathematical topics and concepts in the module are differentiation, integration, first-order ordinary differential equations, Probability, and Statistics.
Year 1
-
Working in groups, you will carry out a project using methods and techniques that parallel industrial practice. You will develop prototypes which solve one or more elements of a given issue. You will look at digital logic in the context of combinational and sequential logic with discrete logic gate circuits (AND, NOT, OR, NAND, XOR, XNOR) and consider how their responses can be modelled in practice using Boolean algebra, truth tables, De Morgan's theorem and Karnaugh maps. You will also become familiar with the professional team working attitudes and skills required to take projects from inception to the fabrication of a final product prototype.
-
In this module you will develop an understanding of programming in C++. You will learn how to use mathematical and computer-based models to solve electronic engineering problems and how to apply quantitative methods in C++. You will look at the concept of a computer program and compilation in the context of objective-orientated programming, and examine the digital representation of numbers, user interfacing, printing to screen, iterative and conditional statements, and error handling.
-
The aim of this module is to provide theoretical and practical knowledge of electronic components and their use in circuits. This module covers the electrical properties of both passive (including resistors, capacitors, inductors) and active electronic components (including diodes, photo diodes, LEDs, transistors, ICs, opto-isolators, opto-couplers) and how they are typically used in practical circuits during laboratory sessions. The design and analysis of analogue circuit behaviour is covered in the context of the use of phasors to represent voltage-current phase differences, transient and steady-state design and analysis of passive and active filters, time and frequency domain representations of the small signal responses of amplifier circuits.
-
The aim of this module is to provide an introduction theoretical and practical knowledge of communications engineering. In terms of indicative content, this module will include the description of a signal and its characterisation in the time and frequency domains, considerations, introduction to analogue and digital signals; linear time invariance, random variables, Gaussian random processes, probability, thermal noise; introduction to modulation techniques including RF modulation, spectral and power considerations, pre-emphasis and de-emphasis, baseband recovery, error detection and correction, PLLs, multiplexing; introduction to digital signal transmission including sampling theorem, a2d and d2a conversion and quantisation, numbers of bits, error bit probabilities, introduction to digital signal processing.
-
In this module you will develop an understanding of how to solve problems involving one variable (either real or complex) and differentiate and integrate simple functions. You will learn how to use vector algebra and geometry and how to use the common probability distributions.
-
In this module you will develop an understanding of how to solve problems involving more than one variable. You will learn how to use matrices and solves eigenvalue problems, and how to manipulate vector differential operators, including gradient, divergence and curl. You will also consider their physical significance and the theorems of Gauss and Stokes.
-
In this module you will develop an understanding of how the internet works and its key protocols. You will look at the technologies used for web development, including scripting languages and their potential for adding dynamic content to web sites and applications. You will consider the role of web services and related technologies, and will examine the fundamental principles of network security.
-
This module will describe the key principles of academic integrity, focusing on university assignments. Plagiarism, collusion and commissioning will be described as activities that undermine academic integrity, and the possible consequences of engaging in such activities will be described. Activities, with feedback, will provide you with opportunities to reflect and develop your understanding of academic integrity principles.
Year 2
-
In this module you will move from prototype design to product creation. Working in groups, you will take on a specific management function within the context of industrial practice. You will use the results of analysis and apply technology by implementing engineering processes to solve engineering problems. You will demonstrate the ability to use relevant materials, equipment, tools, processes or products and use creativity and innovation in a practical context to establish an innovative solution.
-
In this module you will develop an understanding of computer and network security. You will look at software vulnerabilities, hands-on hacking-oriented attacks, memory errors, and web and network security. You will learn how to identify such vulnerabilities and consider the countermeasures that can mitigate their exploitation. You will also examine malicious software (malware) as a typical consequence of a successful software exploitation.
-
In this module you will develop an understanding of how information security may be influenced by real-world design and implementation decisions. You will look at the different cryptographic algorithms, considering their use, advantages and disadvantages. You will use these cryptographic primitives to review and evaluate cryptographic protocols, and examine the rational decisions in the design of tokens and secure elements.
-
The aim of this module is to provide theoretical and practical knowledge of software engineering for electronics. This module introduces software engineering processes including the software lifecycle and the techniques used to produce and manage complex, fit-for-purpose, safe, large, cost-effective software systems in practice from both a technical and non-technical point of view. The concepts of software design, analysis and creation will be explored in the context of real-world examples and software architectures.
-
The aim in this module is to understand the mathematical interactions that the combination of various system types impose upon signals and their conveyance in communication applications, quantifying the interplay of deterministic cost factors such as bandwidth, energy, power and interference.
-
This module introduces the full and holistic life cycle analysis in relation to electronic products and components, their environmental impact and sustainability. You will develop an understanding of closed loop technology renewable and sustainable technologies and challenges, motivators for sustainable engineering and the notion of ‘green engineering’. Ethical and social impact of engineering and technology will be covered together with real-world case studies.
-
In this module you will develop an understanding of the design of algorithms, with a focus on time and space complexity. You will examine basic algorithms, looking at the implementation and analysis of linear search, binary search, and basic sorting, including insertion sort, selection sort, merger sort, quick sort, and heap sort. You will consider alternative data structure representations, such as binary search trees, hash tables, and binary heaps, and will gain an insight into the basics of graph algorithms.
Year 3
-
In this module you will engage in theoretical and practical work on an agreed specific area relevant to electronic engineering. This will usually be a prototype that demonstrates the feasibility of a product or a fully functioning prototype depending on the nature of the topic itself. You will be allocated a supervisor and progress will be monitored against the specification in terms of implementation and testing as appropriate.
-
In this module you will develop an understanding of the scientific principles underpinning practical signal processing. You will look at the mathematics behind signal processing and consider new and emerging technologies within the field. You carry out practical work in digital filter design involving the use of MATLAB.
-
In this module you will develop an understanding of modern techniques used in company management to tackle the challenges of the business sector. You will look at company management structures, company finance, statuary requirements, human resource management, project management techniques, managing risks, health and safety requirements, and how to deal with problems that arise during the project lifecycle. You will consider the role of codes of practice and industry standards, and examine relevant legal requirements governing engineering activities.
-
This course module will help you develop your knowledge and understanding of advanced digital systems design. You will learn the principles of designing digital logic circuits, hardware description languages and control unit design, acquire the skills to design controllers from written specifications, and evaluate and make decisions about specific digital system designs.
-
Optional Modules
There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.
Foundation Year
-
All modules are core
Year 1
-
All modules are core
Year 2
-
All modules are core
Year 3
-
-
-
-
The module covers key areas of cyber security with the critical national (information) infrastructure forming its background. Fault and attack models for information systems and cyber-physical systems are covered in the form of multiple techniques including variants of attack trees allowing probabilistic attack and defence refinements. The module covers models of large-scale networks and their robustness properties to both random failures and particularly to deliberate attacks and discusses how key elements of the CNI such as the Internet but also other infrastructure sectors such as power and transport sectors can be captured by such models. The security of cyber-physical systems and particularly industrial control systems is another major component of the module, including case studies of attacks by state actors and analyses of control system protocols as well as properties peculiar to CPS.
-
In this module you will develop an understanding of the human factors in healthcare engineering. You will look at critical safety issues in healthcare engineering and material compatibility in the context of implantable devices. You will consider the operation of systems such as eye trackers, hearing aids, cochlear implants, pacemakers, wearable health monitors and examine the role of assistive technologies, electronic enhancement for condition diagnosis, medical robots and drug delivery control.
-
-
-
In this module you will develop an understanding of a range of renewable energy generation concepts. You will look at technologies such as wind generators, solar generation, hydro and marine generation concepts, geothermal dynamics and biofuels. You will consider the different sources of primary energy as well as the energy conversion and electricity generation principals that are exploited. Using your engineering skills, you will build your own renewable micro-generators.
Teaching & assessment
Teaching activities will include lectures, tutorials, and seminars. Practical project work will be carried out in groups and individually in purpose-built thinking, prototyping and fabrication laboratories. In particular, the underlying principles of the course are the development of creative skills in the context of proposing ingenious solutions to tomorrow’s problems prior to the prototype and product development stages.
Various assessment methods will be used including examinations for theoretical subjects, formal presentations, reports and practical demonstrations for project work with an additional viva voce examinations for final year individual projects. In addition, you will be involved in workshops and will produce various forms of creative work. You will contribute to group presentations and demonstrations for the assessment of group project work.
Entry requirements
A Levels: CCC
Required subjects:
- A-level in Mathematics
- At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.
T-levels
We accept T-levels for admission to our undergraduate courses, with the following grades regarded as equivalent to our standard A-level requirements:
- AAA* – Distinction (A* on the core and distinction in the occupational specialism)
- AAA – Distinction
- BBB – Merit
- CCC – Pass (C or above on the core)
- DDD – Pass (D or E on the core)
Where a course specifies subject-specific requirements at A-level, T-level applicants are likely to be asked to offer this A-level alongside their T-level studies.
Other UK and Ireland Qualifications
International & EU requirements
English language requirements
All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.
The scores we require
- IELTS: 6.5 overall. No subscore lower than 5.5.
- Pearson Test of English: 61 overall. No subscore lower than 51.
- Trinity College London Integrated Skills in English (ISE): ISE III.
- Cambridge English: Advanced (CAE) grade C.
Your future career
Study at Royal Holloway, University of London Department of Electronic Engineering and lay the foundations for a rewarding career in your chosen field.
Graduates of Computer Systems Engineering have excellent employment prospects, with an abundance of well-paid job opportunities in a variety of sectors struggling to cope with a significant skills shortage.
You’ll develop technological knowledge and a strong transferable skillset including verbal and written communication skills, team work and commercial awareness, preparing you for a career in a range of areas within computer technology industries and beyond.
Royal Holloway is located within the South East regional hub of electronics businesses, meaning you’ll benefit from links to some of the top UK-based electronics companies.
Fees, funding & scholarships
Home (UK) students tuition fee per year*: £9,250
Eligible EU and International students tuition fee per year**: £28,900
Foundation year essential costs***: There are no single associated costs greater than £50 per item on this course.
How do I pay for it? Find out more about funding options, including loans, scholarships and bursaries. UK students who have already taken out a tuition fee loan for undergraduate study should check their eligibility for additional funding directly with the relevant awards body.
*The tuition fee for UK undergraduates is controlled by Government regulations. The fee for Integrated Foundation Year courses starting in September 2025 in the academic year 2025/26 will be £9,250 for that year. The fee for UK students in 2026/27 and beyond has not yet been set.
**This figure is the fee for EU students starting a degree in the academic year 2025/26.
Royal Holloway reserves the right to increase tuition fees annually for overseas fee-paying students. The increase for continuing students who start their degree in 2025/26 will be 5%. For further information see fees and funding and the terms and conditions.
*** These estimated costs relate to studying this particular degree at Royal Holloway during the 2025/26 academic year and are included as a guide. Costs, such as accommodation, food, books and other learning materials and printing, have not been included.